9,593 research outputs found

    How massless are massless fields in AdSdAdS_d

    Get PDF
    Massless fields of generic Young symmetry type in AdSdAdS_d space are analyzed. It is demonstrated that in contrast to massless fields in Minkowski space whose physical degrees of freedom transform in irreps of o(d−2)o(d-2) algebra, AdSAdS massless mixed symmetry fields reduce to a number of irreps of o(d−2)o(d-2) algebra. From the field theory perspective this means that not every massless field in flat space admits a deformation to AdSdAdS_d with the same number of degrees of freedom, because it is impossible to keep all of the flat space gauge symmetries unbroken in the AdS space. An equivalent statement is that, generic irreducible AdS massless fields reduce to certain reducible sets of massless fields in the flat limit. A conjecture on the general pattern of the flat space limit of a general AdSdAdS_d massless field is made. The example of the three-cell ``hook'' Young diagram is discussed in detail. In particular, it is shown that only a combination of the three-cell flat-space field with a graviton-like field admits a smooth deformation to AdSdAdS_d.Comment: 23 pages, LaTeX, a few typos correcte

    Diagnostics in the Extendable Integrated Support Environment (EISE)

    Get PDF
    Extendable Integrated Support Environment (EISE) is a real-time computer network consisting of commercially available hardware and software components to support systems level integration, modifications, and enhancement to weapons systems. The EISE approach offers substantial potential savings by eliminating unique support environments in favor of sharing common modules for the support of operational weapon systems. An expert system is being developed that will help support diagnosing faults in this network. This is a multi-level, multi-expert diagnostic system that uses experiential knowledge relating symptoms to faults and also reasons from structural and functional models of the underlying physical model when experiential reasoning is inadequate. The individual expert systems are orchestrated by a supervisory reasoning controller, a meta-level reasoner which plans the sequence of reasoning steps to solve the given specific problem. The overall system, termed the Diagnostic Executive, accesses systems level performance checks and error reports, and issues remote test procedures to formulate and confirm fault hypotheses

    Direct Detection of Non-Chiral Dark Matter

    Full text link
    Direct detection experiments rule out fermion dark matter that is a chiral representation of the electroweak gauge group. Non-chiral real, complex and singlet representations, however, provide viable fermion dark matter candidates. Although any one of these candidates will be virtually impossible to detect at the LHC, it is shown that they may be detected at future planned direct detection experiments. For the real case, an irreducible radiative coupling to quarks may allow a detection. The complex case in general has an experimentally ruled out tree-level coupling to quarks via Z-boson exchange. However, in the case of two SU(2)_L doublets, a higher dimensional coupling to the Higgs can suppress this coupling, and a remaining irreducible radiative coupling may allow a detection. Singlet dark matter could be detected through a coupling to quarks via Higgs exchange. Since all non-chiral dark matter can have a coupling to the Higgs, at least some of its mass can be obtained from electroweak symmetry breaking, and this mass is a useful characterization of its direct detection cross-section.Comment: 22 pages, 3 figures. References added. Minor corrections to match published versio

    Frustrated magnetism and resonating valence bond physics in two-dimensional kagome-like magnets

    Get PDF
    We explore the phase diagram and the low-energy physics of three Heisenberg antiferromagnets which, like the kagome lattice, are networks of corner-sharing triangles but contain two sets of inequivalent short-distance resonance loops. We use a combination of exact diagonalization, analytical strong-coupling theories, and resonating valence bond approaches, and scan through the ratio of the two inequivalent exchange couplings. In one limit, the lattices effectively become bipartite, while at the opposite limit heavily frustrated nets emerge. In between, competing tunneling processes result in short-ranged spin correlations, a manifold of low-lying singlets (which can be understood as localized bound states of magnetic excitations), and the stabilization of valence bond crystals with resonating building blocks.Comment: Published versio

    KCrF_3: Electronic Structure, Magnetic and Orbital Ordering from First Principles

    Get PDF
    The electronic, magnetic and orbital structures of KCrF_3 are determined in all its recently identified crystallographic phases (cubic, tetragonal, and monoclinic) with a set of {\it ab initio} LSDA and LSDA+U calculations. The high-temperature undistorted cubic phase is metallic within the LSDA, but at the LSDA+U level it is a Mott insulator with a gap of 1.72 eV. The tetragonal and monoclinic phases of KCrF_3 exhibit cooperative Jahn-Teller distortions concomitant with staggered 3x^2-r^2/3y^2-r^2 orbital order. We find that the energy gain due to the Jahn-Teller distortion is 82/104 meV per chromium ion in the tetragonal/monoclinic phase, respectively. These phases show A-type magnetic ordering and have a bandgap of 2.48 eV. In this Mott insulating state KCrF_3 has a substantial conduction bandwidth of 2.1 eV, leading to the possibility for the kinetic energy of charge carriers in electron- or hole-doped derivatives of KCrF_3 to overcome the polaron localization at low temperatures, in analogy with the situation encountered in the colossal magnetoresistive manganites.Comment: 7 pages, 11 figure

    Non conventional screening of the Coulomb interaction in low dimensional and finite size system

    Get PDF
    We study the screening of the Coulomb interaction in non polar systems by polarizable atoms. We show that in low dimensions and small finite size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short range interaction is strongly screened and the long range interaction is anti-screened thereby strongly reducing the gradient of the Coulomb interaction and therefore the correlation effects. We argue that this effect explains the success of mean field single particle theories for large molecules.Comment: 4 pages, 5 figure

    Majorana spin-flip transitions in a magnetic trap

    Get PDF
    Atoms confined in a magnetic trap can escape by making spin-flip Majorana transitions due to a breakdown of the adiabatic approximation. Several papers have studied this process for atoms with spin F=1/2F = 1/2 or F=1F= 1. The present paper calculates the escape rate for atoms with spin F>1F > 1. This problem has new features because the perturbation ΔT\Delta T which allows atoms to escape satisfies a selection rule ΔFz=0,±1,±2\Delta F_z = 0, \pm 1, \pm 2 and multi-step processes contribute in leading order. When the adiabatic approximation is satisfied the leading order terms can be summed to yield a simple expression for the escape rate.Comment: 16page
    • …
    corecore